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AbItrad-An infinite elastic strip moves at constant speed across a frictionless rigid foundation possessing
a step discontinuity. Transform methods are used to reduce the mixed boundary value problem to a system
of singular integral equations. For a ranae of step height and strip speed. the noncontact regions, lower
boundary displacements. and foundation contact pressures are determined. The results show that different
types of solutions exist for given combinations of speed and height. The solution for the corresponding
problem of a stationary strip are also given.

INTRODUCTION
The response of elastic beams and strips to moving loads has been the object of many
investigations. One class of problems occurs when the beam or strip has a one-sided constraint.
The first study of such a problem was made by Adams and Bogy[l} who solve the problem of
an elastic beam resting on a rigid foundation and subjected to a moving load. Both Euler
Bernoulli and Timoshenko beam models were used. In [2} and [3} Adams solves related
problems using plane strain elasticity theory.

An elastic foundation which acts in compression only can be considered a generalization of
an unilateral constraint (rigid foundation). In [4} and [S} Adams determines the response of an
elastic strip pressed against an elastic half plane by a steadily moving load. One characteristic
of the solutions in [I-S} is that for given force and speed more than one type of solution is
possible, i.e. the solution is not unique. This point will be discussed later.

In the present investigation we obtain the solution for an infinite elastic strip moving with
constant speed across a frictionless and rigid foundation which possesses a step discontinuity.
A similar problem involving an elastic beam is solved in [6]. In the present problem, a solution
is obtained by applying Fourier transforms to the equations of motion of a steadily moving
elastic strip (plane strain). By choosing an appropriate integral representation. we reduce the
mixed boundary value problem to a system of singular integral equations which are solved
numerically. The results so obtained are the noncontact regions,lower boundary displacements.
and foundation reaction pressures. The solution for a stationary strip is also presented.

PROBLEM FORMULATION

A uniform, isotropic and homogeneous elastic strip of constant thickness "a" moves to the
right with constant speed "e" across a frictionless and rigid base (Fig. 1). The foundation
possesses the step discontinuity of magnitude 2 h which tends to produce a partial separation of
the layer from the foundation. Using the two-dimensional (plane strain) theory of elasticity, we
write the displacement equations of motion of the strip as

where A, p., P are the Lame's constant. shear modulus, and mass density, uo , Fo are the
components of displacement, and body force, and where

Rewriting eqn (I) in terms of a dimensionless coordinate system. fixed in space with respect to
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the stationary step, we obtain
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where

~I = (XI - ct)/a, ~2 = x2la,

U:(~.. ~2) = (~pga2)i1a(x" X2, t), h == (~pga2)h

Ua == U: - U:, UI' == 0, ul == - ~2(l- ~2/2)/82

p" = clca , 8 == C"C2' CI = V[(A +2p.)/p), C2 == v(p.lp).

(2)

(3)

We note that u: is the dimensionless displacement, ua' is the dimensionless displacement due
to gravity, and Ua is a residual displacement field.

The boundary conditions to be applied are of the mixed type and are given by

(4)

(5)

~I E 92 -n, (6)

(7)

where 92 is the real line (-00,00) and n is the region(s) of separation of the layer from the
foundation (initially unknown). Note that (7) is a residual stress condition. The extra conditions
required to determine the noncontact region(s) n are that the slope of the bottom surface of the
elastic strip be continuous at all contact points excluding the step corner (~I = 0). In addition,
any solution satisfying (2H7) and the regularity conditions must satisfy the following in
equalities:

~I E 92 -!l.

~I En.

(8)

(9)

These conditions state that the normal contact stress remain compressive in the contact region
and that the lower boundary normal displacement not interfere with the geometry of the
foundation.

METHOD OF SOLUTION

Proceeding in a manner similar to [2], we apply the exponential Fourier transform, with
respect to X" to (2), (4), (5). The resulting integral representations of the displacement

c-
iii

t

Fig. I. An infinite elastic strip moving with constant speed across a rigid step.
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components are given in [2] with P = O. We must still satisfy the mixed conditions (6), (7) as
well as the regularity conditions. Evaluating the results of [2], we obtain the normal displace
ment and normal stress on the lower boundary of the strip as

where

R(td) = 2Az[2a(l- cosh AI cosh Az)

+(a z+1) sinh A, sinh Az]/A(w),

A(td) = a cosh A. sinh Az- cosh Azsinh A"

a =(I - ~ 13hz/KIKZ, A,. =tdK,.. K,. =(I - 13"/)~, 'Y =1,2,

and B(td) is unknown.
In order to satisfy (6), we decompose B(w) into its even and odd parts

where

and make use of the following integral representations

The lower boundary displacement finally becomes

uM.. 0) = '" In 41(t)[H(~l)H(t) - H(-~,)H(-t)]H(lti -I~II) dt

- (",/2) sgn (~.) In tf,(t) dt, -00 < ~I < oc

where the identity which can be obtained from [7; p. 18, eq. 1]

f' p-I sin px cos py dp = (17'/2) sgn (x)H(lxl- Iyl)

(10)

(11)

(12)

(13)

(14)

(15)

was used with H(x) the unit step function.
Substituting (13), (14) into (II), using the symmetry of R(w) and reversing the order of

integration we obtain

(16)

for the normal stress on the lower boundary of the strip. By decomposing R(w) according to
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where

and using
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k(w) = - {a 2e-A, sinh ,h +are-A, cosh A2 +e-A, cosh A, - 2]

+e- Al sinh A\}/(1- a)A(w)

d 1" -I' • d x-d P SJnpxSJnpy P=~,
Y 0 x - y

(17)

which can be obtained by differentiating [7. p. 78, eq. 0, the foundation contact pressure
becomes

where

and

,·u\) = 1+ 2'1 In [t ~ ~I + K(e,- t)J~(t)dt, -00< e\ <00

K(x):: L" k«(t)sin wx dw,

'1 = 2K2(1 - a)/(322

(18)

(19)

(20)

ONE REGION OF NONCONTACT

For sufficiently small combinations of step height and speed, we may expect the strip to
separate from the foundation in only one region immediately to the left of the step corner.
Setting the noncontact region

and applying (21) to (15) we obtain

- h.

uMI' 0) = - 1f' f~1 ~(t) dt - h,

h,

provided

fo 2h
~(t)dt:: --

-61 1f'

(21)

(22)

(23)

where (22) satisfies (6). We must now satisfy the mixed normal stress condition (7), which, using
(18), (20), (21) becomes

(24)

The singular integral equation (24) is also subject to (23) as well as the regularity condition at
~l = - 83

(25)
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Due to the presence of the step comer, there is no regularity condition at the point fl =0; the
normal stress will be singular and the lower boundary displacement will be discontinuous at this
point.

TWO REGIONS OF NONCONTACT

Solutions obtained with only one region of noncontact are valid provided the inequality
constraints (8) and (9) are satisfied. Solutions for two regions of noncontact can be obtained by
using

(26)

which together with (15) results in

-It, -00< fl < -9)

f'- 1r 4>.(t) dl - h, - 6)< fl <0
-I)

U(fhO) = It, 0<fl<8.

f'- 1r 4>2(I)dl +h, 61 < f, < 82

"
h, 62 < fl < 00

(27)

provided

(28)

The system of two singular integral equations for determining the unknown functions 4>1(1) and
4>2(1) is

211 f., [, ~ el +K(e, - 1)]4>1(1) dl

+2'11 f,~ [, ~ fl +KUl - I)]4>2(t)dl =- 1,

- 8) < fl < 0, tJ1< fl < 82,

(29)

which is subject to the conditions given in (28), and regularity conditions of smooth contact of
the form of (25) at the points fl =- 8), fl =tJ" fl =82. These conditions will be incorporated
directly into the numerical procedure described below.

STATIONARY STRIP

The solution for a stationary strip can be obtained either by taking an asymptotic expansion
for small speeds, or by resolving the problem. For brevity we simply list the results

11 =1(1- v)

k(w) =[2w("" + I) + I - e-2"J/(sinh 2"" +2",,).

Using (18), (l9)h (21)-{25) solutions may be obtained for one noncontact region. Solutions for
two noncontact regions may then be determined from (18), (l9)h (26H29).

NUMERICAL SOLUTIONS

We will now solve the system of singular integral equations previously defined using the
collocation method of Erdogan and Gupta [8). Focusing our attention on the solution of the
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equations (27) and (28). corresponding to two noncontact regions we make the following linear
transformations

where

Then defining

s.- 2t _(h;+aj) r.==~_(dj+c;) i= 1.2
I (hj - a;) (b; - aj)' I (dj - c;) (d; - Cj)'

al == 61• hi = 62• 61< t < 62

a2 =: - 63• b2 =0. -63 <t<0

CI = 6" d l == 6z• 61 < ~I < 62

C2 = - 63• dz=: O. - 63 <~' <0.

'I';(s;) = 4>;(t). i = 1,2

'ir,(s,) ='l'1(s,h/[(I- SI)/(I + Sl))' 'ir2(S2) ='l'z(sz)/v'(I- sl)

(30)

(31)

eqns (27) and (28) are approximated (8J by the following system of 2N + 3 linear algebraic
equations

(32)

where

t hi-a; +b;+a; J 1 2 N ,"=: 1.2
i) =-2- SiJ -2-. =., ... , .

d; - Ci dj + C; -
~1;K=-2-r;K+-2-' K== 1,2•...• N. i=I,2

[. = hi - Q; I 2
I 2' i == • •

211'(1 + 5lJ) A 11' Z ~
AI] == 2N +t' 2J = N + 1(1- su)-, J == 1.2." ".• N

(
2(J - t )11') ( J1T )

SI]=cos 2N+I ' S2J==COS N+l' J=I,2, .... N

(
2KlI' ) (1I'(2K -1))rlK = cos 2N + t • rZK == cos 2N + 2 • K == 1.2." ..• N + 1.

The system of eqns (32) is linear in the 2N unknowns 'ir;(SiJ) but nonlinear in 610 62 and 63,

However, since the system is linear in h. we may treat (32) as if h were unknown and 83 known.
This leaves us with a system of 2N +3 equations which is linear in 2N + I unknowns and
nonlinear in 61 and 62 which can be obtained by a simple iterative process. Having solved (32).
we can now determine the contact pressure by a simple quadrature of (18), while the lower
boundary displacement may be determined from (27).

Due to the singularity at the step corner we define the stress intensity factor K by

K == lim ~I~r*(~l)'
{I-o
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Fig. 2. Step heipt (II) vs noncontaetlength (8]) for one noneontact region and various values of strip speed
(PI)'
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Fig. 3. Step height (h) vs stress-intensity factor (K) for one noneontaet region and various values of strip
speed (PI).

which can be expressed as

where ~1(1) must be determined by interpolation.

(33)
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RESULTS AND DISCUSSION

Agraph of step height (h) vs noncontact length (8) corresponding to one noncontact region
is given in Fig. 2 for various speeds (PIP Note that 8) increases monotonically with h and that
for given step height the value of 8) is greater for lower speeds. Figure 3 shows step height (h)
vs stress-intensity factor (K) again for one noncontact region and various speeds (PI)' Note that
for given h the value of K is greater at lower speeds. This is because at lower values of PI the
corresponding value of 83 is higher (for given h) and hence the step corner carries a greater

10.0t- _
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0.50.40.30.10.0 0.2

/31

Fig. 4. Limiting values of noncontact length (lil ), stress-intensity factor (10. step height (h). and lift-off
location (/) vs strip speed (PI) for one noneontact region.
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Fig. 5. Step height vs noneontactlengths for two noneontaet regions and various speeds.

tAli results given in this paper are for a value of 0.25 for Poisson's ratio. Furthermore we emphasize that "h" is a
dimensionless quantity as defined by (3).
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load. For a specified value of '3 the value of the stress-intensity factor does increase with
speed. In FiS. 4 we show a srtph of the limitins values of step heipt (Ir), stress-intensity factor
(K), noncontact lensth (93), and location of the zero pressure point (I) vs speed PI at which a
second noncontact relion initially appears. All of these quantities decrease monotonically with
speed (/!I,).

In rll. 5 we show a quantity related to step heipt (/!II·Ir) vs noncontact lensths (PI~,/!I1'3)

for the first mode correspondins to two noncontact resions and various speeds (/!II)' Note that
the behavior is no Ionser monotonic. At any speed, as 92 increases from its initial value (I in
Fig. 4), /t increases until it reaches a maximum and then decreases to zero. Similarly 8)
increases to a maximum and then decreases to zero. With both 83 and Ir equal to zero we have
tbe first "free mode" solutions given in [2] for a ftat foundation and zero load. We also observe
that as speed increases, the maximum value of Ir for tbis first mode also increases. A srtph of
Il,·/t vs /!I I

2K for various speeds is given in Fig. 6. At given speed larger values of step height

O12~
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O~~P;h
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0.02J

00 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9

/1~K
Fig. 6. Step height vs stress·intensity factor for two noncontract regions and various speeds.
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FiB· 7. Step height (It) vs noncontact lengths 1810 81• 81) for fixed speed /PI '" 0.4) and two nonconlacl
regions.
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usually correspond to peater values of stress-intensity factor. The problem is, of course,
nonlinear due to the existence of noncontact regions.

In Fig. 7 we show h vs 6" 6:z and 6, for the first three modes (A, B, C) correspondina to two
noncontact regions at a fixed speed (II. = 0.4). Mode A begins with 6. = 6:z and behaves as
discussed in connection with Fig. S. Mode B starts with one point on the lower boundary of the
leadina noncontact region touching the foundation. As 6:z increases the point lifts off and h
increases to a local maximum and then decreases to zero. This leaves mode B at the second free
mode solution and a flat foundation. The behavior of mode C, as well as higher modes not
shown, is qualitatively similar to that of B. As in [1-6] at given speed and step height an infinite
number of solutions is possible. Due to the nonlinearity associated with the existence of
noncontact regions, different initial conditions (which cause different transient solutions) can
lead to different steady solutions. The results shown here can then be considered a collection of
such solutions. Figure 8 shows step height (h) vs stress-intensity factor (K) for modes A, B, C

10.0
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2.0

0.0 0.5 1.0 1.5

K
2.0 2.5

c

3.0

Fig. 8. Step height (h) vs stress-intensity factor (K) for fixed sneed (PI = 0.4) and two noncontaet regions.
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Fig. 9(a-c).
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d)

h=5.00
81=0.25
82=4.00
83=0.99

K=2.21

773

I)

h=8.59
81=0.08
82=6.80
83=1.05

K=2.91

Fig. 9(a~). Lower boundary displacement and foundation contact pressure vs t. for fixed speed (~. =0.4).

h

300

250

200

100

50

2.0 4.0 6.0 8.0 10.0 12.0

Fig. 10. Step height (h) vs noncontact lengths (81, 82• 8) and stress-intensity factor (Kl for a stationary
strip. Dashed lines represent results from Euler-Bernoulli theory.
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Fig. 11. Lower boundary displacement and foundation contact pressure vs ~I for a stationary strip.

at fixed speed ({31 =0.4). Note that for given step height the value of K does not depend
strongly on the mode. This is because the stress-intensity factor depends on the distances 93

and 9, to a much greater extent than it depends on 92, In Fig. 9(a-e) we show typical lower
boundary displacements (plotted above the step profile) and foundation contact pressure
(shown beneath the step) corresponding to the results shown in Fig. 7.

The corresponding results for a stationary strip are shown in Figs. 10 and II for one and two
noncontact regions. Note that these solutions are unique and that 9" 92• 93 and K vary
monotonically with step height h (Fig. 10).

Note that the results obtained for this plane strain analyses approach those determined using
the simpler Euler-Bernoulli 'beam theory[6] as 83 increases. Recall that large values of the
dimensionless 83 correspond to "thin" strips since 83 is the ratio of the significant length (a83) to
the strip thickness (a). For small values of 83 the local effects such as the simularity at the step
corner cause the two theories to give different results. Typical displacement shapes and
foundation pressures are shown in Fig. l1(a-c).
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